In vitro reconstitution of snRNPs: a reconstituted U4/U6 snRNP participates in splicing complex formation.
نویسندگان
چکیده
We have reconstituted in vitro the four snRNPs known to be involved in pre-mRNA splicing: U1, U2, U5, and U4/6. Reconstitution involves adding either authentic or in vitro-synthesized snRNAs to extracts enriched in snRNP structural polypeptides. The reconstituted snRNPs have the same buoyant density and are immunoprecipitated by the same antibodies as authentic snRNPs. Thus, the polypeptide composition of reconstituted snRNPs is similar, if not identical, to that of authentic snRNPs. We show further that a reconstituted U4/U6 particle is fully functional in forming splicing complexes with pre-mRNA. As is the case for the authentic U4/U6 snRNP, the reconstituted U4 snRNP, but not the U6 snRNA, dissociates from the complex prior to formation of the mature spliceosome. The ability to reconstitute snRNPs and assay their activity in spliceosome formation should provide a powerful approach to study these particles.
منابع مشابه
Detection of snRNP assembly intermediates in Cajal bodies by fluorescence resonance energy transfer
Spliceosomal small nuclear ribonucleoprotein particles (snRNPs) are required for pre-mRNA splicing throughout the nucleoplasm, yet snRNPs also concentrate in Cajal bodies (CBs). To address a proposed role of CBs in snRNP assembly, we have used fluorescence resonance energy transfer (FRET) microscopy to investigate the subnuclear distribution of specific snRNP intermediates. Two distinct complex...
متن کاملRecycling of the U12-type spliceosome requires p110, a component of the U6atac snRNP.
U12-dependent introns are spliced by the so-called minor spliceosome, requiring the U11, U12, and U4atac/U6atac snRNPs in addition to the U5 snRNP. We have recently identified U6-p110 (SART3) as a novel human recycling factor that is related to the yeast splicing factor Prp24. U6-p110 transiently associates with the U6 and U4/U6 snRNPs during the spliceosome cycle, regenerating functional U4/U6...
متن کاملA subset of human 35S U5 proteins, including Prp19, function prior to catalytic step 1 of splicing.
During catalytic activation of the spliceosome, snRNP remodeling events occur, leading to the formation of a 35S U5 snRNP that contains a large group of proteins, including Prp19 and CDC5, not found in 20S U5 snRNPs. To investigate the function of 35S U5 proteins, we immunoaffinity purified human spliceosomes that had not yet undergone catalytic activation (designated BDeltaU1), which contained...
متن کاملRNAi knockdown of hPrp31 leads to an accumulation of U4/U6 di-snRNPs in Cajal bodies.
Cajal bodies (CBs) are subnuclear organelles of animal and plant cells. A role of CBs in the assembly and maturation of small nuclear ribonucleoproteins (snRNP) has been proposed but is poorly understood. Here we have addressed the question where U4/U6.U5 tri-snRNP assembly occurs in the nucleus. The U4/U6.U5 tri-snRNP is a central unit of the spliceosome and must be re-formed from its componen...
متن کاملLsm Proteins Promote Regeneration of Pre-mRNA Splicing Activity
Lsm proteins are ubiquitous, multifunctional proteins that affect the processing of most RNAs in eukaryotic cells, but their function is unknown. A complex of seven Lsm proteins, Lsm2-8, associates with the U6 small nuclear RNA (snRNA) that is a component of spliceosome complexes in which pre-mRNA splicing occurs. Spliceosomes contain five snRNAs, U1, U2, U4, U5, and U6, that are packaged as ri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genes & development
دوره 3 4 شماره
صفحات -
تاریخ انتشار 1989